

DUNSKY OVERVIEW

EXPERTISE

SERVICES

CONTEXT OF THE STUDY

CAPACITY OPTIONS

RECOMMENDATION

NEXT STEPS

PROJECT OVERVIEW

PROJECT INTRODUCTION

The City of Summerside hired Dunsky to study options and make recommendations on how to deal with Summerside Electric's capacity needs 15 years into the future.

Understanding Summerside's System

Compile Capacity Planning Requirements

Confirm the Peak Load Forecast

Initial Stakeholder Input to Inform Analysis

Comparative Analysis of Capacity Resource Characteristics and Costs

Draft Recommendations and Presentation

Refine Recommendations

CAPACITY AND ITS ROLE

WHAT IS CAPACITY PLANNING?

Capacity planning:

► Forecasting what is needed to meet customers' demands for electricity at all times given foreseeable emergencies and contingencies.

Requirements:

North American Electric Reliability Corporation (NERC) reliability standards.

CAPACITY – ENERGY ANALOGY

More efficient/cost-effective for general, everyday purposes such as driving to work

The rationale for buying a car for regular, everyday use represents *energy planning:* How much energy do we need over the course of the year, and how do we provide it in a cost-effective and sustainable way?

Required for family outings and events, when everyone needs to fit

The rationale for buying a van (or ensuring that one is available) for those times when we need more space represents *capacity planning:* How much energy do we need at those few times when demand for energy (or space, in the case of our analogy) is highest?

With capacity planning, we need to plan for those days when we need the extra space.

CAPACITY - ENERGY

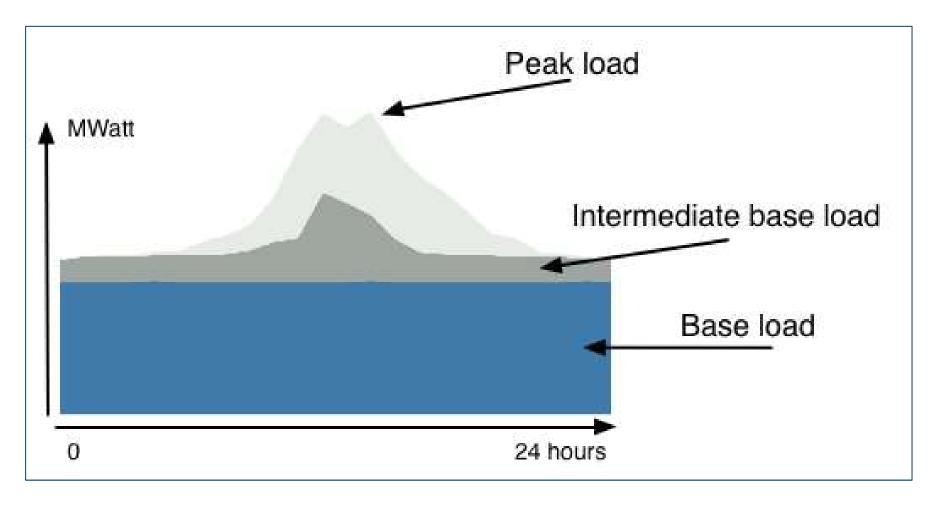
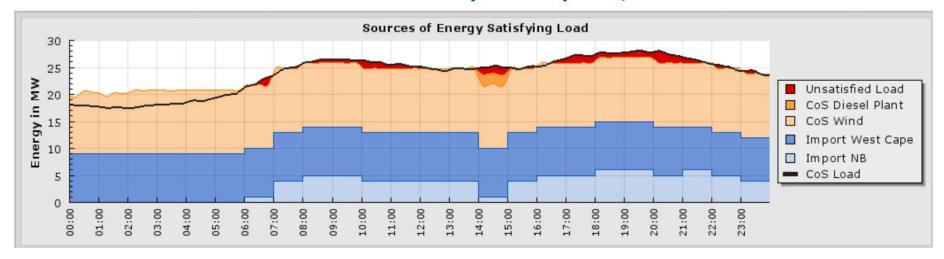
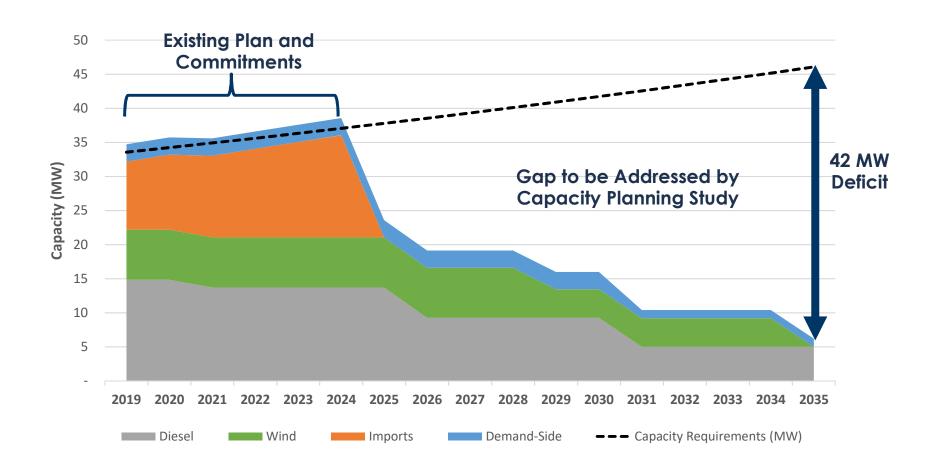


Image from:


 $\underline{https://consequential-lca.org/clca/the-functional-unit/determining-market-boundaries/example-temporal-markets-electricity/lconsequential-lca.org/clca/the-functional-unit/determining-market-boundaries/example-temporal-markets-electricity/lconsequential-lca.org/clca/the-functional-unit/determining-market-boundaries/example-temporal-markets-electricity/lconsequential-lca.org/clca/the-functional-unit/determining-market-boundaries/example-temporal-markets-electricity/lconsequential-lca.org/clca/the-functional-unit/determining-market-boundaries/example-temporal-markets-electricity/lconsequential-lca.org/clca/the-functional-unit/determining-market-boundaries/example-temporal-markets-electricity/lconsequential-lca.org/clca/the-functional-unit/determining-market-boundaries/example-temporal-markets-electricity/lconsequential-lca.org/clca/the-functional-unit/determining-market-boundaries/example-temporal-market-boundari$

CAPACITY & ENERGY SOURCES

Tuesday February 26th, 2019


CONTEXT

WHAT WE'RE DOING AND WHY WE'RE DOING IT

PROJECT OVERVIEW

SUMMERSIDE'S EXISTING CAPACITY MIX (=)

INITIAL OPTIONS REVIEWED

Identifying Capacity Options

Qualitative Evaluation

Quantitative Assessment

Recommended Capacity Option

- Imports
- Diesel Generator -Petrodiesel
- Diesel Generator -Biodiesel
- Grid-Scale Battery Storage
- Behind-the-Meter Battery
- Wind
- Biomass
- Municipal Solid Waste

Supply-Side Options to Pursue

- Compressed-Air Energy Storage
- Solar
- Coal
- Geothermal
- Hydro and Pumped Storage
- Natural Gas
- Nuclear

Supply-Side Options
Not to Pursue

- Expand Heat for Less Now (HFLN)
- Expand Interruptible Load Program

Demand-Side Options

QUALITATIVE EVALUATION

Identifying Capacity Options

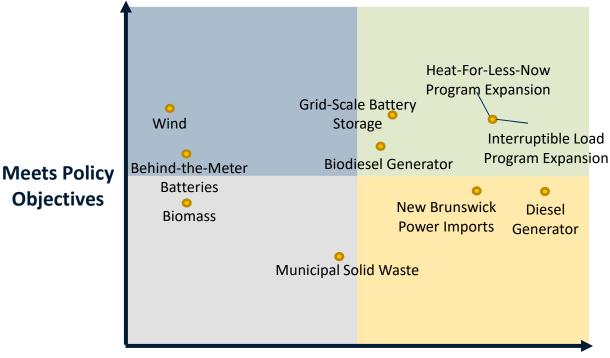
Qualitative Evaluation

Quantitative Assessment

Recommended Capacity Option

Type of Objective	Attribute	Definition/Description		
Policy	Approvable	Acceptable to policy makers and citizenry		
	Low Cost	Does not significantly increase electric rates		
	GHG Intensity	Qualitative assessment of level of GHG emissions in comparison to		
		other options		
	Renewable	Resources that are replenished on a human timescale		
Technical	Black Start	Provides the ability to restore an electrical system's operations		
		without relying on an external transmission network to recover		
		from a shutdown (known as "black start" capability)		
	Reliable	Available to serve winter peak load; meets NERC requirements		
	Resilient	Available during long-duration outage events		
Policy & Technical	Secure	Located on-Island		
	Diversity	Contributes to greater fuel and/or technology diversity on the		
		system		
	Modular & Scalable	Can be installed in smaller increments over time instead of in one		
		large investment		

QUALITATIVE EVALUATION



Identifying Capacity Options

Qualitative Evaluation

Quantitative Assessment

Recommended Capacity Option

QUANTITATIVE ASSESSMENT

Identifying Capacity Options

Qualitative Evaluation

Quantitative Assessment

Recommended Capacity Option

Selected for Quantitative Analysis:

- New Brunswick Power imports (baseline option)
- Expansion of the Heat For Less Now (HFLN) program
- Expansion of the Interruptible Load program (ILP)
- Grid-scale battery storage
- Biodiesel generator
- Diesel generator

ANALYSIS RESULTS

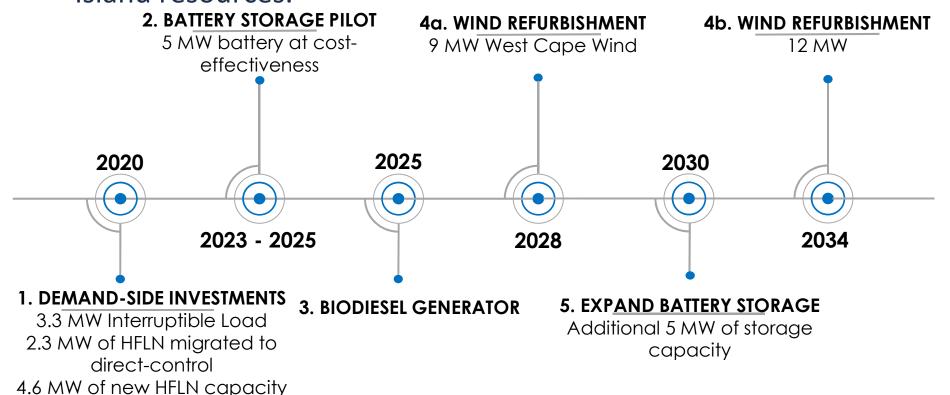
ANALYSIS RESULTS

KEY TAKEAWAYS

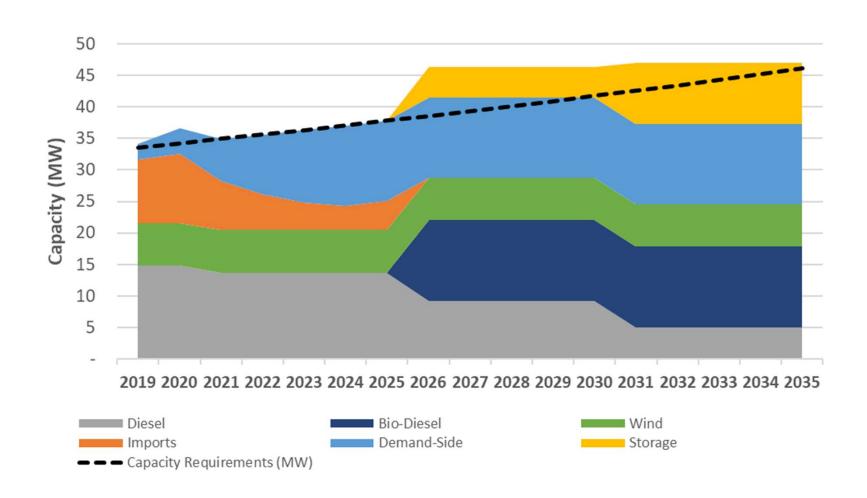
- Demand-side options have the most advantageous business case to Summerside
- Based on projected cost assumptions for imports, every assessed option has a positive economic case relative to imports either immediately or in the medium term (2025)
- All analyzed capacity options result in a reduction in revenue requirements
- No single capacity option except for imports is capable of covering all of Summerside's future capacity deficit

ANALYSIS RESULTS SUMMARY

Optic	ons	Levelized Unit Cost (\$/kW/year)	Net Present Value (NPV)	Average Revenue Requirement Impacts (% over lifetime)	% of Capacity Resources On- Island (by 2035)	Relative GHG Emissions (qualitative)
Imports (Baseline against which alternatives are compared)						
Diesel	2020	\$ 96	\$ 0.2 M	-0.2%	49%	High
	2025	\$ 96	\$ 3.2 M	-0.6%	49%	High
Heat for Le	ess Now	\$ 72	\$ 7.0 M	-2.2%	36%	Low
Interruptik	ole Load	\$ 12	\$ 3.4 M	-0.5%	28%	Medium
Battery Storage	2020	\$ 249	(\$ 4.2 M)	+ 1.4%	31%	Low
	2025	\$ 166	\$ 1.7 M	-0.7%	31%	Low
	2030	\$ 120	\$ 4.4 M	-1.8%	31%	Low
Biodiesel	2020	\$ 97	(\$ 0.8 M)	-0.1%	49%	Medium
	2025	\$ 97	\$ 2.4 M	-0.4%	49%	Medium


Most desirable Least desirable

STACKED, STAGED APPROACH


A staged approach that "stacks" multiple capacity sources rather than relying on one option only may allow Summerside to meet its goal of supplying a greater share of its capacity needs with on-Island resources.

ANALYZED CAPACITY MIX

SUMMARY VALUES

- Recommendation results in positive NPV and net-positive cash-flow beginning in 2020.
- Results in a decline in Summerside's revenue requirement as a result of the avoided energy and capacity import costs.

Capacity Options	Levelized Cost of Capacity (\$/kW/year)	Net Present Value	Average Revenue Requirements Impacts Over Lifetime	% of Capacity Resources on- Island by 2035
Recommendation	\$52	\$18.9M	-2.9%	100%

BENEFITS

- Secure, reliable and diverse resource mix
- Maintains flexibility moving forward, despite fast-paced technological and policy changes
 - Avoids technology lock-in (e.g. investing in an option that may become too outdated in comparison to other emerging opportunities)
 - ► Hedges against technology innovation (e.g., emerging technologies or significant cost reductions in newer options)
 - ▶ Allows Summerside to adapt its system to changing conditions (e.g. electrification of heating and transportation)
 - ► Enables adaptation to changing policy directions and considerations related to increasing demand for renewable energy
 - ▶ Allows additional analysis prior to any particular option being implemented (for example, the ability to decommission existing diesel generators earlier or adding imports for diversity purposes)

THE ROLE OF IMPORTS

- While imports are not included in the presented analysis, they can be a beneficial part of Summerside's electric system:
 - ► Enhances ability to monitor technology advancements
 - Locking all aspects of the system into today's technology can be expensive and less effective
 - Increases diversity of supply
 - Greater diversity provides a more reliable system and can reduce costs
 - ► Enables demand-side opportunities analysis
 - Potential has not been analyzed in detail

Role of imports

- ► No single option should exceed 50% of the portfolio
- Performance of resources should not be closely correlated
- Stagger lifetimes of resources

NEXT STEPS

SCHEDULE & NEXT STEPS

NEXT STEPS

- Receive and engage with stakeholder input
- Revise report as necessary
- Submit final report to City

LEARN MORE

dunsky.com

Julie-Ann Vincent Senior Consultant julie-ann.vincent@dunsky.com (902) 222-7533

CONTACT

